Troubleshooting#

Error messages#

docker: Error response from daemon: OCI runtime create failed: container_linux.go:345: starting container process caused "process_linux.go:424: container init caused \"process_linux.go:407: running prestart hook 1 caused \\\"error running hook: exit status 1, stdout: , stderr: exec command: [/usr/bin/nvidia-container-cli --load-kmods configure --ldconfig=@/sbin/ldconfig --device=all --compute --utility --require=cuda>=10.0 brand=tesla,driver>=384,driver<385 brand=tesla,driver>=410,driver<411 --pid=35777 /var/lib/docker/devicemapper/mnt/7b5b6d59cd4fe9307b7523f1cc9ce3bc37438cc793ff4a5a18a0c0824ec03982/rootfs]\\\\nnvidia-container-cli: requirement error: unsatisfied condition: brand = tesla\\\\n\\\"\"": unknown.

If you see the above error message, the GPU hardware and/or NVIDIA drivers installed on the agent are not compatible with CUDA 10, but you are trying to run a Docker image that depends on CUDA 10. Please run the commands below; if the first succeeds and the second fails, you should be able to use Determined as long as you use Docker images based on CUDA 9.

docker run --gpus all --rm nvidia/cuda:9.0-runtime nvidia-smi
docker run --gpus all --rm nvidia/cuda:10.0-runtime nvidia-smi

Debug Database Migration Failures#

Dirty database version <a long number>. Fix and force version.

If you see the above error message, a database migration was likely interrupted while running and the database is now in a dirty state.

Make sure you back up the database and temporarily shut down the master before proceeding further.

To fix this error message, locate the up migration with a suffix of .up.sql and a prefix matching the long number in the error message in this directory <https://github.com/determined-ai/determined/tree/master/master/static/migrations>_ and carefully run the SQL within the file manually against the database used by Determined. For convenience, all the information needed to connect except the password can be found with:

det master config | jq .db

If this proceeds successfully, then mark the migration as successful by running the following SQL:

UPDATE schema_migrations SET dirty = false;

And restart the master. Otherwise, please seek assistance in the community Slack.

Validate NVIDIA Container Toolkit#

To verify that a Determined agent instance can run containers that use GPUs, run:

docker run --gpus all --rm debian:10-slim nvidia-smi

You should see output that describes the GPUs available on the agent instance, such as:

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.39       Driver Version: 418.39       CUDA Version: 10.1     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce GTX 108...  Off  | 00000000:05:00.0 Off |                  N/A |
| 56%   84C    P2   177W / 250W |  10729MiB / 11176MiB |     76%      Default |
+-------------------------------+----------------------+----------------------+
|   1  GeForce GTX 108...  Off  | 00000000:06:00.0 Off |                  N/A |
| 28%   62C    P0    56W / 250W |      0MiB / 11178MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   2  GeForce GTX 108...  Off  | 00000000:09:00.0 Off |                  N/A |
| 31%   64C    P0    57W / 250W |      0MiB / 11178MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   3  TITAN Xp            Off  | 00000000:0A:00.0 Off |                  N/A |
| 20%   36C    P0    57W / 250W |      0MiB / 12196MiB |      6%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0      4638      C   python3                                    10719MiB |
+-----------------------------------------------------------------------------+