Examples¶
Get started quickly by using an example machine learning model that has been converted to
Determined’s APIs. Visit the examples/
subdirectory of the Determined GitHub repo or download the link below.
Each example includes a model definition and one or more experiment configuration files. To run an
example, download the appropriate .tgz
file, extract it, cd
into the directory, and use
det experiment create
to create a new experiment, passing in the appropriate configuration file.
For example, here is how to train the mnist_pytorch
example with a fixed set of hyperparameters:
tar xzvf mnist_pytorch.tgz
cd mnist_pytorch
det experiment create const.yaml .
For an introduction to using the training API, please visit the Training APIs section.
Computer Vision¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
CIFAR-10 |
|
PyTorch |
MNIST |
|
PyTorch |
Imagenet |
|
PyTorch |
Penn-Fudan Dataset |
|
PyTorch (Model Hub MMDetection) |
COCO |
|
PyTorch |
COCO |
|
PyTorch |
COCO |
|
PyTorch |
COCO |
|
PyTorch |
COCO |
|
PyTorch (Lightning Adapter) |
MNIST |
|
TensorFlow (Estimator API) |
MNIST |
|
TensorFlow (tf.keras) |
Fashion MNIST |
|
TensorFlow (tf.keras) |
CIFAR-10 |
|
TensorFlow (tf.keras) |
Iris Dataset |
|
TensorFlow (tf.keras) |
Oxford-IIIT Pet Dataset |
|
PyTorch |
CIFAR-10 / STL-10 / ImageNet |
Natural Language Processing (NLP)¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
SQuAD |
|
PyTorch |
SQuAD 2.0 |
|
PyTorch |
GLUE |
|
PyTorch |
WikiText-2 |
|
PyTorch (Model Hub Transformers) |
WikiText-2 |
|
PyTorch (Model Hub Transformers) |
SWAG |
|
PyTorch (Model Hub Transformers) |
SQuAD v1 and v2 |
|
PyTorch (Model Hub Transformers) |
GLUE and XNLI |
|
PyTorch (Model Hub Transformers) |
CoNLL-2003 |
DeepSpeed¶
Framework |
Dataset |
Filename |
---|---|---|
DeepSpeed (PyTorch) |
Enron Email Corpus |
|
DeepSpeed (PyTorch) |
CIFAR-10 |
|
DeepSpeed (PyTorch) |
CIFAR-10 |
|
DeepSpeed (PyTorch) |
MNIST / CIFAR-10 |
|
DeepSpeed (PyTorch) |
CIFAR-10 |
HP Search Benchmarking¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
CIFAR-10 |
|
PyTorch |
Penn Treebank Dataset |
Neural Architecture Search (NAS)¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
DARTS |
Meta Learning¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
Omniglot |
Diffusion¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
det_logos |
Generative Adversarial Networks (GANs)¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
MNIST |
|
TensorFlow (tf.keras) |
MNIST |
|
TensorFlow (tf.keras) |
pix2pix |
Graphs¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
PROTEINS |
Decision Trees¶
Framework |
Dataset |
Filename |
---|---|---|
TensorFlow (Estimator API) |
Titanic |
Features: Custom Reducers¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
MNIST |
Features: HP Search Constraints¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
MNIST |
Features: Custom Search Method¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
MNIST |