Example Solutions¶
Determined includes several example machine learning models that have been ported to Determined’s
APIs. These examples can be found in the examples/
subdirectory of the Determined GitHub repo; download links to each
example can also be found below.
Each example consists of a model definition, along with one or more experiment configuration files.
To run one of these examples, download the appropriate .tgz
file, extract it, cd
into the
directory, and use det experiment create
to create a new experiment, passing in the appropriate
configuration file. For example, here is how to train the mnist_pytorch
example with a fixed set
of hyperparameters:
tar xzvf mnist_pytorch.tgz
cd mnist_pytorch
det experiment create const.yaml .
For an introduction to using the training API, please see the Training APIs section.
Computer Vision¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
CIFAR-10 |
|
PyTorch |
MNIST |
|
PyTorch |
Imagenet |
|
PyTorch |
Penn-Fudan Dataset |
|
PyTorch (Model Hub MMDetection) |
COCO |
|
PyTorch |
COCO |
|
PyTorch |
COCO |
|
PyTorch |
COCO |
|
PyTorch |
COCO |
|
PyTorch (Lightning Adapter) |
MNIST |
|
TensorFlow (Estimator API) |
MNIST |
|
TensorFlow (tf.keras) |
Fashion MNIST |
|
TensorFlow (tf.keras) |
CIFAR-10 |
|
TensorFlow (tf.keras) |
Iris Dataset |
|
TensorFlow (tf.keras) |
Oxford-IIIT Pet Dataset |
|
PyTorch |
CIFAR-10 / STL-10 / ImageNet |
Natural Language Processing (NLP)¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
SQuAD |
|
PyTorch |
SQuAD 2.0 |
|
PyTorch |
GLUE |
|
PyTorch |
WikiText-2 |
|
PyTorch (Model Hub Transformers) |
WikiText-2 |
|
PyTorch (Model Hub Transformers) |
SWAG |
|
PyTorch (Model Hub Transformers) |
SQuAD v1 and v2 |
|
PyTorch (Model Hub Transformers) |
GLUE and XNLI |
|
PyTorch (Model Hub Transformers) |
CoNLL-2003 |
DeepSpeed¶
Framework |
Dataset |
Filename |
---|---|---|
DeepSpeed (PyTorch) |
Enron Email Corpus |
|
DeepSpeed (PyTorch) |
CIFAR-10 |
|
DeepSpeed (PyTorch) |
CIFAR-10 |
|
DeepSpeed (PyTorch) |
MNIST / CIFAR-10 |
|
DeepSpeed (PyTorch) |
CIFAR-10 |
HP Search Benchmarking¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
CIFAR-10 |
|
PyTorch |
Penn Treebank Dataset |
Neural Architecture Search (NAS)¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
DARTS |
Meta Learning¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
Omniglot |
Diffusion¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
det_logos |
Generative Adversarial Networks (GANs)¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
MNIST |
|
TensorFlow (tf.keras) |
MNIST |
|
TensorFlow (tf.keras) |
pix2pix |
Graphs¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
PROTEINS |
Decision Trees¶
Framework |
Dataset |
Filename |
---|---|---|
TensorFlow (Estimator API) |
Titanic |
Features: Custom Reducers¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
MNIST |
Features: HP Search Constraints¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
MNIST |
Features: Custom Search Method¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
MNIST |