Shortcuts

Install Determined on Kubernetes

This document describes how to install Determined on Kubernetes. The installation is performed using the Determined Helm Chart. For general information about using Determined with Kubernetes, refer the Determined on Kubernetes guide.

Prerequisites

Before installing Determined on a Kubernetes cluster, please ensure that the following prerequisites are satisfied:

  • The Kubernetes cluster should be running Kubernetes >= 1.15, with GPU support enabled.

  • You should have access to the cluster via kubectl.

  • Helm 3 should be installed.

You should also download a copy of the Determined Helm Chart and extract it on your local machine.

If you do not yet have a Kubernetes cluster deployed and you want to use Determined in a public cloud environment, we recommend using a managed Kubernetes offering such as Google Kubernetes Engine (GKE) on GCP or Elastic Kubernetes Service (EKS) on AWS. For more info on configuring GKE for use with Determined, refer to our Instructions for setting up a GKE cluster. For info on configuring EKS, refer to our Instructions for setting up an EKS cluster.

What Gets Installed

When the Determined Helm chart is installed, the following entities will be created:

  1. Deployment of the Determined master.

  2. ConfigMap containing configurations for the Determined master.

  3. LoadBalancer service to make the Determined master accessible. Later in this guide, we describe how it is possible to replace this with a NodePort service.

  4. ServiceAcccount which will be used by the Determined master.

  5. Deployment of a Postgres database. Later in this guide, we describe how an external database can be used instead.

  6. PersistentVolumeClaim for the Postgres database. Omitted if using an external database.

  7. Service to allow the Determined master to communicate with the Postgres database. Omitted if using an external database.

Configuration

When installing Determined using Helm, you should first configure some aspects of the Determined deployment by editing the values.yaml and Chart.yaml files in the Helm chart.

Version Configuration

To configure which version of Determined will be installed by the Helm chart, users should modify appVersion in Chart.yaml. Users can specify a release version (e.g., 0.13.0) or specify any commit hash from the upstream Determined repo (e.g., b13461ed06f2fad339e179af8028d4575db71a81). Users are strongly encouraged to use a released version.

Number of GPUs Per Node

Users are required to specify the number of GPUs on each node (for GPU-enabled nodes only). This is done by setting maxSlotsPerPod in values.yaml. Determined uses this information when scheduling multi-GPU tasks. Each multi-GPU (distributed training) task will be scheduled as a set of slotsPerTask / maxSlotsPerPod separate pods, with each pod assigned up to maxSlotsPerPod GPUs. Distributed tasks with sizes that are not divisible by maxSlotsPerPod are never scheduled. If you have a cluster of different size nodes set maxSlotsPerPod to the smallest common denominator. For example, if you have nodes with 4 GPUs and other nodes with 8 GPUs, set maxSlotsPerPod to 4 so that all distributed experiments will launch with 4 GPUs per pod (e.g., on nodes with 8 GPUs, two such pods would be launched).

Checkpoint Storage

Checkpoints and TensorBoards events can be configured to be stored in shared_fs, AWS S3, or GCS. By default, checkpoints and TensorBoard events are stored using shared_fs, which creates a hostPath Volume and saves to the host file system. This configuration is intended for initial testing only; users are strongly discouraged from using shared_fs for actual deployments of Determined on Kubernetes, because most Kubernetes cluster nodes do not have a shared file system.

Instead of using shared_fs, users should configure either AWS S3 or GCS:

  • AWS S3: To configure Determined to use AWS S3 for checkpoint and TensorBoard storage, users need to set checkpointStorage.type in values.yaml to s3 and set checkpointStorage.bucket to the name of the bucket. The pods launched by the Determined master must have read, write, and delete access to the bucket. To enable this users may optionally configure checkpointStorage.accessKey and checkpointStorage.secretKey. Users may also optionally configure checkpointStorage.endpointUrl which specifies the endpoint to use for S3 clones (e.g., http://<minio-endpoint>:<minio-port|default=9000>).

  • GCS: To configure Determined to use Google Cloud Storage for checkpoints and TensorBoard data, users need to set checkpointStorage.type in values.yaml to gcs and set checkpointStorage.bucket to the name of the bucket. The pods launched by the Determined master must have read, write, and delete access to the bucket. For example, when launching their GKE nodes users need to specify --scopes=storage-full to configure proper GCS access.

Default Pod Specs (Optional)

As described in the Determined on Kubernetes guide, when tasks (e.g., experiments, notebooks) are started in a Determined cluster running on Kubernetes, the Determined master launches pods to execute these tasks. The Determined helm chart makes it possible to set default pod specs for all CPU and GPU tasks. The defaults can be defined in values.yaml under taskContainerDefaults.cpuPodSpec and taskContainerDefaults.gpuPodSpec. For examples of how to do this and a description of permissible fields please see the specifying custom pod specs guide.

Database (Optional)

By default, the Helm chart will deploy an instance of Postgres on the same Kubernetes cluster where Determined itself is deployed. If this is undesirable, users can configure the Helm chart to use an external Postgres database by setting db.hostAddress to the IP address of their database. If db.hostAddress is configured, the Determined Helm chart will not deploy a database.

TLS (Optional)

By default, the Helm chart will deploy a load-balancer which makes the Determined master accessible over HTTP. To secure your cluster, Determined supports configuring TLS encryption which can be configured to terminate inside a load-balancer or inside the Determined master itself. To configure TLS, users should set useNodePortForMaster to true. This will instruct Determined to deploy a NodePort service for the master. Users can then configure an Ingress that performs TLS termination in the load balancer and forward plain test to the NodePort service, or forwards TLS encrypted data. Please note when configuring an Ingress that you need to have an Ingress controller runing your cluster.

  1. TLS termination in a load-balancer (e.g., nginx). This option will provide TLS encryption between the client and the load-balancer, with all communication inside the cluster performed via http. To configure this option set useNodePortForMaster to true and then configure an Ingress service to perform TLS termination and forward the plain text traffic to the Determined master.

  2. TLS termination in the Determined master. This option will provide TLS encrytption inside the Kubernetes cluster. All communication with the master will encrypted. Communication between task containers (distributed triaining) will not be encrypted. To configure this option create a Kuberentes TLS secret within the namespace where Determined is being installed and set tlsSecret to be the name of this secret. Users will also have to set useNodePortForMaster to true. Once the the NodePort service is created, users can configure an Ingress to forward TLS encrypted data to the NodePord service.

An example of how to configure an Ingress, by default this Ingress will perform TLS termination in the load-balancer:

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
  name: determined-ingress
  annotations:
    kubernetes.io/ingress.class: "nginx"

    # Uncommenting this option instucts the created load-balancer
    # to forward TLS encrypted data to the NodePort service and
    # perform TLS termination in the Determined master. In order
    # to configure ssl-passthrough, your nginx ingress controller
    # must be running with --enable-ssl-passthrough option enabled.
    #
    # nginx.ingress.kubernetes.io/ssl-passthrough: "true"
spec:
  tls:
  - hosts:
    - your-hostname-for-determined.ai
    secretName: your-tls-secret-name
  rules:
  - host: your-hostname-for-determined.ai
    http:
      paths:
        - path: /
          backend:
            serviceName: determined-master-service-<name for your deployment>
            servicePort: masterPort configured in values.yaml

Installing Determined

Once finished making configuration changes in values.yaml and Chart.yaml, Determined is ready to be installed. To install Determined run:

helm install <name for your deployment> determined-helm-chart

determined-helm-chart is a relative path to where the Determined Helm Chart is located. It may take a few minutes for all resources to come up. If you encounter issues during installation please follow our list of useful kubectl commands. Helm will install Determined within the default namespace. If you wish to install Determined into a non-default namespace, add -n <namespace name> to the command shown above.

Once the installation has completed, instructions will be displayed for discovering the IP address assigned to the Determined master. The IP address can also be discovered by running kubectl get services.

Upgrading Determined

To upgrade Determined or to change a configuration setting, first make the appropriate changes in values.yaml and Chart.yaml, and then run:

helm upgrade <name for your deployment> --wait determined-helm-chart

Before upgrading Determined, consider pausing all active experiments. Any experiments that are active when the Determined master restarts will resume training after the upgrade, but will be rolled back to their most recent checkpoint.

Uninstalling Determined

To uninstall Determined run:

# Please note that if the Postgres Database was deployed by Determined, it will
# be deleted by this command, permanently removing all records of your experiments.
helm delete <name for your deployment>

# If there were any active tasks when uninstalling, this command will
# delete all of the leftover Kubernetes resources. It is recommended to
# pause all experiments prior to upgrading or uninstalling Determined.
kubectl get pods --no-headers=true -l=determined | awk '{print $1}' | xargs kubectl delete pod