Examples¶
Determined includes several example machine learning models that have
been ported to Determined’s APIs. These examples can be found in the
examples/
subdirectory of the Determined GitHub repo;
download links to each example can also be found below.
Each example consists of a model definition, along with one or more
experiment configuration files. To run one of these examples, download
the appropriate .tgz
file, extract it, cd
into the directory,
and use det experiment create
to create a new experiment, passing in
the appropriate configuration file. For example, here is how to train
the mnist_pytorch
example with a fixed set of hyperparameters:
tar xzvf mnist_pytorch.tgz
cd mnist_pytorch
det experiment create const.yaml .
For an introduction to using the Trial API, refer to the PyTorch MNIST and tf.keras MNIST tutorials.
Computer Vision¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
CIFAR-10 |
|
PyTorch |
MNIST |
|
PyTorch |
Penn-Fudan Dataset |
|
PyTorch |
COCO |
|
TensorFlow (Estimator API) |
MNIST |
|
TensorFlow (tf.layers via Estimator API) |
MNIST |
|
TensorFlow (tf.keras) |
Fashion MNIST |
|
TensorFlow (tf.keras) |
CIFAR-10 |
|
TensorFlow (tf.keras) |
Iris Dataset |
|
TensorFlow (tf.keras) |
Oxford-IIIT Pet Dataset |
Natural Language Processing (NLP)¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
SQuAD |
|
PyTorch |
GLUE |
HP Search Benchmarking¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
CIFAR-10 |
|
PyTorch |
Penn Treebank Dataset |
Neural Architecture Search (NAS)¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
DARTS |
Meta Learning¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
Omniglot |
Generative Adversarial Networks (GANs)¶
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
MNIST |
Decision Trees¶
Framework |
Dataset |
Filename |
---|---|---|
TensorFlow (Estimator API) |
Titanic |
Data Layer¶
Framework |
Dataset |
Filename |
---|---|---|
TensorFlow (Estimator API) |
MNIST |
|
TensorFlow (tf.keras) |
MNIST |