Examples#
Get started quickly by using an example machine learning model that has been converted to
Determined’s APIs. Visit the examples/
subdirectory of the Determined GitHub repo or download the link below.
Each example includes a model definition and one or more experiment configuration files. To run an
example, download the appropriate .tgz
file, extract it, cd
into the directory, and use
det experiment create
to create a new experiment, passing in the appropriate configuration file.
For example, here is how to train the mnist_pytorch
example with a fixed set of hyperparameters:
tar xzvf mnist_pytorch.tgz
cd mnist_pytorch
det experiment create const.yaml .
For an introduction to using the training APIs, please visit Training APIs.
Computer Vision#
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
MNIST |
|
TensorFlow (tf.keras) |
CIFAR-10 |
DeepSpeed#
Framework |
Dataset |
Filename |
---|---|---|
DeepSpeed (PyTorch) |
Enron Email Corpus |
DeepSpeed Autotune#
Framework |
Dataset |
Filename |
---|---|---|
DeepSpeed (PyTorch) |
ImageNet (Generated) |
|
HuggingFace (DeepSpeed/PyTorch) |
Beans (HuggingFace) |
|
HuggingFace (DeepSpeed/PyTorch) |
WikiText (HuggingFace) |
Diffusion#
Framework |
Dataset |
Filename |
---|---|---|
PyTorch |
det_logos |